APY and Annuities

Finite Math

20 February 2017

Finite Math APY and Annuities

1 / 15

Quiz

If some amount of money is deposited into a savings account with interest compounded biweekly, how many times is it compounded after 4 years?

Tutoring

The HAC has two tutors for Finite Math who are available by appointment (unless demand shows them otherwise):

- Lia Clark: liaclark@go.rmc.edu
- Jordan McCall: jordanmccall@go.rmc.edu

Compound Interest

We can also look to figure out the desired interest rate if we know the present value, the length of time, and the desired future value.

Compound Interest

We can also look to figure out the desired interest rate if we know the present value, the length of time, and the desired future value.

Example

The Russell Index tracks the average performance of various groups of stocks. On average, a \$10,000 investment in mid-cap growth funds over a 10-year period would have grown to \$63,000. What annual nominal rate would produce the same growth if interest were compounded (a) annually, (b) continuously? Express answers as a percentage, rounded to three decimal places.

4 / 15

Now You Try It!

Example

A promissory note will pay \$50,000 at maturity 6 years from now. If you pay \$28,000 for the note now, what rate would you earn if interest were compounded (a) quarterly, (b) continuously?

5 / 15

Now You Try It!

Example

A promissory note will pay \$50,000 at maturity 6 years from now. If you pay \$28,000 for the note now, what rate would you earn if interest were compounded (a) quarterly, (b) continuously?

Solution

- (a) 9.78%
- (b) 9.66%

5 / 15

Suppose we are looking at various certificates of deposit (CDs) from different banks and we've come across the following ones

Bank	Rate	Compounded
Advanta	4.93%	monthly
DeepGreen	4.95%	daily
Charter One	4.97%	quarterly
Liberty	4.94%	continuously

Finite Math APY and Annuities

Suppose we are looking at various certificates of deposit (CDs) from different banks and we've come across the following ones

Bank	Rate	Compounded
Advanta	4.93%	monthly
DeepGreen	4.95%	daily
Charter One	4.97%	quarterly
Liberty	4.94%	continuously

How can we tell which has the largest return on our investment?

If we purchased a \$1,000 CD which lasts for a year from each bank, our return in each case would be

If we purchased a \$1,000 CD which lasts for a year from each bank, our return in each case would be

Bank	Return
Advanta	\$1,050.43
DeepGreen	\$1,050.74
Charter One	\$1,050.63
Liberty	\$1,050.64

7 / 15

It's best to come up with a standardized number, which we call the Annual Percentage Yield. What this number does is tell you how much your investment will grow by at the end of 1 year. In a sense, it is the effective interest rate

8 / 15

Finite Math APY and Annuities

It's best to come up with a standardized number, which we call the Annual Percentage Yield. What this number does is tell you how much your investment will grow by at the end of 1 year. In a sense, it is the effective interest rate. How do we get this then?

8 / 15

Finite Math APY and Annuities

It's best to come up with a standardized number, which we call the Annual Percentage Yield. What this number does is tell you how much your investment will grow by at the end of 1 year. In a sense, it is the effective interest rate. How do we get this then? We use the following idea

> amount at amount at simple interest = compound interest after 1 year after 1 year

8 / 15

It's best to come up with a standardized number, which we call the *Annual Percentage Yield*. What this number does is tell you how much your investment will grow by at the end of 1 year. In a sense, it is the *effective interest rate*. How do we get this then? We use the following idea

amount at amount at simple interest = compound interest after 1 year after 1 year

Solving for the simple interest rate on the left will tell us, effectively, how much interest is made in a year.

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^m$$

9 / 15

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^{m}$$
$$1 + APY = \left(1 + \frac{r}{m}\right)^{m}$$

9 / 15

Finite Math APY and Annuities

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^{m}$$

$$1 + APY = \left(1 + \frac{r}{m}\right)^{m}$$

$$APY = \left(1 + \frac{r}{m}\right)^{m} - 1$$

Finite Math APY and Annuities

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^{m}$$

$$1 + APY = \left(1 + \frac{r}{m}\right)^{m}$$

$$APY = \left(1 + \frac{r}{m}\right)^{m} - 1$$

and in the continuously compounded case:

$$P(1 + APY) = Pe^{r}$$

9 / 15

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^{m}$$

$$1 + APY = \left(1 + \frac{r}{m}\right)^{m}$$

$$APY = \left(1 + \frac{r}{m}\right)^{m} - 1$$

and in the continuously compounded case:

$$P(1 + APY) = Pe^{r}$$
$$1 + APY = e^{r}$$

For compound interest:

$$P(1 + APY) = P\left(1 + \frac{r}{m}\right)^{m}$$

$$1 + APY = \left(1 + \frac{r}{m}\right)^{m}$$

$$APY = \left(1 + \frac{r}{m}\right)^{m} - 1$$

and in the continuously compounded case:

$$P(1 + APY) = Pe^{r}$$

$$1 + APY = e^{r}$$

$$APY = e^{r} - 1$$

APY

Definition (Annual Percentage Yield)

If a principal is invested at the annual (nominal) rate r compounded m times a year, then the annual percentage yield is

$$APY = \left(1 + \frac{r}{m}\right)^m - 1$$

If a principal is invested at the annual (nominal) rate r compounded continuously, then the annual percentage yield is

$$APY = e^r - 1$$

10 / 15

APY

Example

Southern Pacific Bank offered a 1-year CD that paid 4.8% compounded daily and Washington Savings Bank offered one that paid 4.85% compounded quarterly. Find the APY for each CD. Which has a higher return?

11 / 15

Now You Try It!

Example

An online bank listed a 1-year CD that earns 1.25% compounded monthly. Find the APY as a percentage, rounded to three decimal places.

Finite Math APY and Annuities 20 February 2017 12 / 15

Now You Try It!

Example

An online bank listed a 1-year CD that earns 1.25% compounded monthly. Find the APY as a percentage, rounded to three decimal places.

Solution

1.257%

12 / 15

Annuities

At this point, we have only discussed investments where there was one initial deposit and a final payoff. But what if you make regular equal payments into an account?

Finite Math APY and Annuities 20 February 2017 13 / 15

Annuities

At this point, we have only discussed investments where there was one initial deposit and a final payoff. But what if you make regular equal payments into an account? An *annuity* is a sequence of equal periodic payments. If payments are made at the end of each time interval, then the annuity if called an *ordinary annuity*. Our goal will be to find the future value of an annuity.

Finite Math APY and Annuities 20 February 2017 13 / 15

Future Value of an Annuity

Example

Suppose you decide to deposit \$100 every 6 months into a savings account which pays 6% compounded semiannually. If you make 6 deposits, one at the end of each interest payment period over the course of 3 years, how much money will be in the account after the last deposit is made?

14 / 15

We can visualize the value of each of those \$100 deposits in a table.

Finite Math APY and Annuities 20 February 2017 15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit Term # of times **Future** Value Compounded

Finite Math APY and Annuities

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times	Future
		Compounded	Value

\$100

Finite Math APY and Annuities

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value	
\$100	1			

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	

We can visualize the value of each of those \$100 deposits in a table.

Deposi	t Term	# of times Compounded	Future Value
\$100	1	5	$100 (1 + \frac{0.06}{2})^5 = 100(1.03)^5$

Finite Math APY and Annuities

15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100			

15 / 15

APY and Annuities Finite Math

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2		

15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	

15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$

15 / 15

Finite Math APY and Annuities

We can visualize the value of each of those \$100 deposits in a table.

De	posit	Term	# of times	Future
			Compounded	Value
\$	100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$	100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$
\$	100	3	3	$100 \left(1 + \frac{0.06}{2}\right)^3 = 100(1.03)^3$

APY and Annuities

15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times	Future
		Compounded	Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$
\$100	3	3	$100 \left(1 + \frac{0.06}{2}\right)^3 = 100(1.03)^3$
\$100	4	2	$100 \left(1 + \frac{0.06}{2}\right)^2 = 100(1.03)^2$

Finite Math APY and Annuities

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$
\$100	3	3	$100 \left(1 + \frac{0.06}{2}\right)^3 = 100(1.03)^3$
\$100	4	2	$100 \left(1 + \frac{0.06}{2}\right)^2 = 100(1.03)^2$
\$100	5	1	$100 \left(1 + \frac{0.06}{2}\right)^1 = 100(1.03)$

Finite Math APY and Annuities

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$
\$100	3	3	$100 \left(1 + \frac{0.06}{2}\right)^3 = 100(1.03)^3$
\$100	4	2	$100 \left(1 + \frac{0.06}{2}\right)^2 = 100(1.03)^2$
\$100	5	1	$100 \left(1 + \frac{0.06}{2}\right)^1 = 100(1.03)$
\$100	6	0	$100 \left(1 + \frac{0.06}{2}\right)^0 = 100$

APY and Annuities

15 / 15

We can visualize the value of each of those \$100 deposits in a table.

Deposit	Term	# of times Compounded	Future Value
\$100	1	5	$100 \left(1 + \frac{0.06}{2}\right)^5 = 100(1.03)^5$
\$100	2	4	$100 \left(1 + \frac{0.06}{2}\right)^4 = 100(1.03)^4$
\$100	3	3	$100 \left(1 + \frac{0.06}{2}\right)^3 = 100(1.03)^3$
\$100	4	2	$100 \left(1 + \frac{0.06}{2}\right)^2 = 100(1.03)^2$
\$100	5	1	$100 \left(1 + \frac{0.06}{2}\right)^1 = 100(1.03)$
\$100	6	0	$100 \left(1 + \frac{0.06}{2}\right)^0 = 100$

So adding up the future values of all these will give us the amount of money in the account

$$B = \$100(1.03)^5 + \$100(1.03)^4 + \$100(1.03)^3 + \$100(1.03)^2 + \$100(1.03) + \$100 = \$646.84$$

Finite Math APY and Annuities 20 February 2017 15 / 15